Columnar interactions determine horizontal propagation of recurrent network activity in neocortex.

نویسندگان

  • Jason C Wester
  • Diego Contreras
چکیده

The cortex is organized in vertical and horizontal circuits that determine the spatiotemporal properties of distributed cortical activity. Despite detailed knowledge of synaptic interactions among individual cells in the neocortex, little is known about the rules governing interactions among local populations. Here, we used self-sustained recurrent activity generated in cortex, also known as up-states, in rat thalamocortical slices in vitro to understand interactions among laminar and horizontal circuits. By means of intracellular recordings and fast optical imaging with voltage-sensitive dyes, we show that single thalamic inputs activate the cortical column in a preferential layer 4 (L4) → layer 2/3 (L2/3) → layer 5 (L5) sequence, followed by horizontal propagation with a leading front in supragranular and infragranular layers. To understand the laminar and columnar interactions, we used focal injections of TTX to block activity in small local populations, while preserving functional connectivity in the rest of the network. We show that L2/3 alone, without underlying L5, does not generate self-sustained activity and is inefficient propagating activity horizontally. In contrast, L5 sustains activity in the absence of L2/3 and is necessary and sufficient to propagate activity horizontally. However, loss of L2/3 delays horizontal propagation via L5. Finally, L5 amplifies activity in L2/3. Our results show for the first time that columnar interactions between supragranular and infragranular layers are required for the normal propagation of activity in the neocortex. Our data suggest that supragranular and infragranular circuits, with their specific and complex set of inputs and outputs, work in tandem to determine the patterns of cortical activation observed in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks

Linking synaptic connectivity to dynamics is key to understanding information processing in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, necessitating that links between connectivity and dynamics be evaluated at the network level. Here we map propagating activity in large neuronal ensembles from mouse neocortex and compare it to a recurrent network mod...

متن کامل

Statistical mechanics of neocortical interactions: Nonlinear columnar electroencephalography

ABSTRACT: Columnar firings of neocortex, modeled by a statistical mechanics of neocortical interactions (SMNI), are investigated for conditions of oscillatory processing at frequencies consistent with observed electroencephalography (EEG). A strong inference is drawn that physiological states of columnar activity receptive to selective attention support oscillatory processing in observed freque...

متن کامل

Propagation of Seizurelike Activity in a Model of Neocortex Running title: Seizurelike Activity in a Model of Neocortex

Seizures in pediatric epilepsy are often associated with spreading, repetitive bursting activity in neocortex. We examined onset and propagation of seizurelike activity using a computational model of cortical circuitry. The model includes two pyramidal cell types and four types of inhibitory interneurons; each neuron is represented by a multicompartmental model with biophysically realistic ion ...

متن کامل

Emergence of functional circuits in ferret visual cortex visualized by optical imaging

The emergence of functional lateral interactions in ferret visual cortex was monitored using high speed optical imaging of voltage-sensitive dye signals in brain slices. Prior to the time of eye opening, lateral activation was restricted to a narrow columnar region. During the week following eye opening, the extent of lateral propagation of activity more than doubled. Selective interruption of ...

متن کامل

Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits

Layer 5 thick tufted pyramidal cells (TTCs) in the neocortex are particularly electrically complex, owing to their highly excitable dendrites. The interplay between dendritic nonlinearities and recurrent cortical microcircuit activity in shaping network response is largely unknown. We simulated detailed conductance-based models of TTCs forming recurrent microcircuits that were interconnected as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 16  شماره 

صفحات  -

تاریخ انتشار 2012